内容简介
本书由五部分组成:推荐系统的技术、评估、应用、人机交互及高级话题。第 一部分展示了如今构建推荐系统的流行和基础的技术,如协同过滤、基于语义的方法、数据挖掘方法和基于情境感知的方法。第二部分主要关注离线和真实用户环境下用于评估推荐质量的技术及方法。第三部分包括了一些推荐技术多样性的应用。首先简述了与工业实现和推荐系统开发相关的一般性问题,随后详细介绍了推荐系统在各领域中的应用:音乐、学习、移动、社交网络及它们之间的交互。第四部分包含了探讨一系列问题的文章,这些问题包括推荐的展示、浏览、解释和视觉化以及人工决策与推荐系统相关的重要问题。第五部分收集了一些关于高级话题的文章,例如利用主动学习技术来引导新知识的学习,构建能够抵挡恶意用户攻击的健壮推荐系统的合适技术,以及结合多种用户反馈和偏好来生成更加可靠的推荐系统。
相关截图
最新评论
徒弟可以A师傅,学生可以A老师,为什么外包不能A正式,我觉得很正常。异性相吸这是宇宙真理
PHP天下第一(狗头叼花)
第一个不需要关注公主号直接给激活码的帖子!
客户端超时断开后,服务端如果没有设置超时机制,那也会继续等待处理,万一这期间有消息到了,那不是就接受到消息处理了,但是也没有办法返回到客户端,导致消息丢失。
企业级GO项目开发实战 Kubernetes权威指南 第六版
https://pan.baidu.com/s/1q3bnTncIACKoTZFxvx7BQw?pwd=ii7n
RabbitMQ精讲,项目驱动落地,分布式事务拔高 有吗?
Spring Cloud Alibaba 微服务架构实战 https://pan.baidu.com/s/1jF5voFRoeF0lYAzAPBWSbw?pwd=chqk