从0开始做垂直O2O个性化推荐
上次以58转转为例,介绍了如何从0开始如何做互联网推荐产品,58转转的宝贝为闲置物品,品类多种多样,要做统一的宝贝画像比较难,而分类别做宝贝画像成本又非常高,所以更多的是进行用户画像、分类预测推荐、协同过滤推荐等个性化推荐。
有些同学反馈,他们的产品是垂直类的O2O产品,分类单一,可以简单的实现宝贝画像,这类垂直O2O产品怎么从零开始做个性化推荐呢?这是本文要讨论的问题
一、58到家美甲简介
58到家有三大自营业务“家政”“美甲”和“速运” ,美甲能够实现“足不出户,享品质服务,做美丽女人”,目前提供上门美甲、修复与卸甲、美睫、化妆等服务。
http://bj.daojia.com/liren/
二、从0开始设计垂直O2O推荐框架
(1)列表页推荐:用户既然进入到了美甲,成交意愿是非常强烈的,首页的推荐至关重要
(2)宝贝详情页推荐:买了还买,看了还看类的关联宝贝推荐
(3)下单成功页推荐:既然下单了某个甲样,可能会喜欢相近的甲样哟
(4)召回推荐:在用户退出系统后,通过RFM模型做优惠券推送或者消息推送做客户挽留与召回
RFM模型:根据用户最近一次购买时间Recency,最近一段时间的购买频率Frequency,最近一段时间的购买金额Monetary,加权得到的一个代表用户成交意愿的一个分值。
三、甲样列表页推荐详细流程
(1)用户点击进入甲样列表页
(2)画像用户的消费能力
(3)抽取购买、收藏、喜欢、浏览的历史数据
(4)根据历史数据,对所有甲样进行打分,综合一些产品策略,推荐出首屏的4个甲样,例如:
(5)如果用户下单,以被下单的相似甲样做推荐
(6)如果用户跳出,可以根据信用评级、消费等级做优惠券召回推荐
四、与业务紧密结合的策略规则
推荐系统并不是一个单纯的算法问题,而是一个与产品、工程架构都相关的综合性问题,不同的业务会有不同的产品策略,这些是在做推荐时需要考虑的,以美甲为例,需要考虑:
(1)排序前2名要推荐最符合用户消费能力的甲样(例如“价格小于150”)
(2)被推荐的4个甲样要覆盖尽可能多的消费区间(例如“两个甲样价格小于150,两个甲样价格大于150”)
(3)被推荐的4个甲样要覆盖最火的产品、旧产品、新产品(例如“1个爆品,2个旧加油,1个新甲样”)
(4)垂直相邻的甲样,颜色不同(为了视觉体验)
(5)水平相邻的甲样,颜色不同(原因同上)
(6)垂直相邻的甲样,款式不同(为了视觉体验,以及产品覆盖度、受众度)
(7)水平相邻的甲样,款式不同(原因同上)
(8)…
五、如何利用甲样画像与用户购买、收藏、喜欢、浏览的历史数据对所有甲样进行打分?
【宝贝画像】
垂直O2O的相对比较容易做宝贝画像,宝贝品类比较单一(甲样),宝贝的品种也比较少(几千几万种甲样),熟悉业务的人可以对宝贝进行画像(不需要复杂的机器学习方法),以甲样为例,可以抽象出:
款式
颜色
风格
场景
图案
其他
等多个核心属性
【核心属性赋值,标签化】
宝贝画像完毕之后,对于每一个核心属性,可以进行赋值,实施标签化
款式:纯色,法式,渐变,彩绘,贴饰
颜色:红色,粉色,蓝色,白色
风格:简约,甜美,复古,可爱
场景:派对,旅行,约会,晚宴,夜店
图案:卡通,小碎花,动物,桃心,五角星
【抽取用户历史行为】
抽取购买、收藏、喜欢、浏览的历史行为数据,得到一些甲样ID集合set
【查询所有历史行为甲样ID的画像属性,对标签进行频率统计】
用户U历史行为某买了甲样1:bb-id1,收藏了甲样2:bb-id2
从库中查询出所有甲样的详细属性
bb-id1:彩绘,红色,可爱,夜店,桃心
bb-id2:彩绘,粉色,可爱,夜店,桃心
对标签进行统计
款式:{彩绘:2}
颜色:{红色:1,粉色:1}
风格:{可爱:2}
场景:{夜店:2}
图案:{桃心:2}
【根据标签统计,量化对标签的喜爱程度】
例如,标签量化打分公式可以为:score=同类标签出现频率
那么,对于“款式”这个属性,依据上述统计,各标签的打分是:
纯色=0分,法式=0分,渐变=0分,彩绘=1分,晕染=0分,贴饰=0分(假设只有5种款式)
同理,对于“颜色”这个属性,依据上述统计,各标签的打分是:
红色=0.5分,粉色=0.5分,蓝色=0分,白色=0分(假设只有4种颜色)
…
这个打分是一个简单举例,实际上的打分公式会复杂很多(例如购买与收藏贡献的分值不一样)
【根据上述量化标签,量化用户对每个甲样的喜爱程度】
例如,对于一个甲样X{纯色,红色,简约,夜店,卡通},可以计算出用户对它的喜爱分值为
socre-X = 0(纯色) + 0.5(红色) + 0(简约) + 1(夜店) + 0(卡通) = 1.5分
这个打分是一个简单举例,实际上打分公式会复杂很多(例如各个属性的权重是不一样的)
【对所有甲样计算分值,排序】
【从高到底进行甲样推荐】
推荐的过程中注意,4款甲样要符合第四个大步骤中提到的产品策略(要覆盖各个价格范围,相邻颜色与样式不同等)
【个性化推荐完成】
好了,暂时先到这里,上面的思路绝对是能落地的,希望58到家美甲的推荐,对其他刚开始做垂直O2O互联网产品的同学有帮助。
注:本文是58到家推荐负责人@王洪权 做58到家美甲推荐技术交流时,@58沈剑 做的纪要,内容“略”有修改。
最新评论
https://pan.baidu.com/s/1q3bnTncIACKoTZFxvx7BQw?pwd=ii7n
RabbitMQ精讲,项目驱动落地,分布式事务拔高 有吗?
Spring Cloud Alibaba 微服务架构实战 https://pan.baidu.com/s/1jF5voFRoeF0lYAzAPBWSbw?pwd=chqk
命令: nload
真是个良心站点哇,大公无私,爱了爱了
还可以直接搞一张映射表,存 uid | time | source_index, 第一次直接查对应的 time 选出前100, 第二次直接用 CompleteFuture 去分别用 source_in
干得漂亮,多个朋友堵条路
2021.2.2版本的不适用吧